Stygofauna in the Pilbara region, north-west Western Australia: a review

S M Eberhard, S A Halse & W F Humphreys

1 Department of Conservation and Land Management, Science Division, PO Box 51, Wanneroo, WA 6065
2 Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986

© stefane@calm.wa.gov.au

Manuscript received March 2005; accepted November 2005

Abstract

North-west Western Australia appears to contain one of the world’s more diverse subterranean faunas and this paper summarises published literature about stygofauna of the Pilbara region, within north-west Western Australia. To date, 332 occurrences of 78 species from approximately 223 sites have been recorded. The stygofaunal species occur in an array of different groundwater environments including porous, karstic and fractured-rock aquifers, springs and hyporheic habitats. Sampling coverage has been highly skewed in terms of areal coverage and the different types of groundwater environments represented – 96% of sampled sites are bores or wells, while springs and hyporheic habitats have rarely been sampled. The higher-level systematic diversity of the region is quite comprehensive in global terms, but the species-level taxonomy of most groups is still incomplete. There appears to be significant regional endemism in the Pilbara stygofauna, including some relict freshwater lineages. Karstic aquifers, karst springs and porous alluvial aquifers contain high species richness. This review confirms that the Pilbara is an important region for subterranean biodiversity.

Keywords: stygofauna, Pilbara

Introduction

This paper reviews current information on stygofauna in the Pilbara region of north-west Western Australia by providing an updated list of taxa and making some comparisons with adjacent regions. Since the last synopsis of stygofauna in the Pilbara region (Humphreys 2000a), 11 papers describing 47 new species and seven new locality records from the Pilbara (cf. 23 described Pilbara species up to 2000) have been published. This suggests that the Pilbara region is important for subterranean biodiversity. The review is apposite because in recent years there has been some conflict between ecological water requirements for groundwater-dependent ecosystems, including stygofauna, and groundwater abstraction or mine dewatering (Water & Rivers Commission 1996; Johnson & Wright 2001; Playford 2001).

Despite its arid setting, north-west Western Australia appears to contain one of the world’s more diverse subterranean faunas, dominated by crustaceans and including many relict obligate groundwater species with affinities to Tethys, and to Pangaea and its derived landmasses (Humphreys 1993ab, 1999a, 2001a; Knott 1993). This rich stygofauna was initially discovered in the anchialine groundwater system at Cape Range (Whitley 1945; Mees 1962; Humphreys & Adams 1991), subsequently on Barrow Island (Humphreys 2001b) and then in the Pilbara region (Poore & Humphreys 1998). As a consequence of earlier discovery and small land areas, the Cape Range (3,600 km²) and Barrow Island (324 km²) stygofaunas are reasonably well known and taxonomically described, with a review and systematic lists in Humphreys (2000b). By contrast, since 2000 in the Pilbara region, descriptions have been published of Amphipoda (Bradbury 2000), Isopoda (Wilson 2003), Ostracoda (Karanovic & Marmonier 2002; Martens and Rossetti 2002; Karanovic & Marmonier 2003; Karanovic 2005), Spelaeogriphacea (Poore & Humphreys 2003), and Copepoda (Karanovic 2004a; Karanovic 2005 in press). Taxonomic knowledge of Amphipoda has been augmented by molecular studies that investigated congruence between morphology and molecular markers (Finston et al. 2004), and geographic patterns of genetic diversity (Finston and Johnson 2004). In addition, Pinder (2001) recorded undescribed species of phreodrilid oligochaetes, and there has been a substantial amount of recent collecting in the Pilbara region, results of which are unpublished. To the south of the Pilbara region, stygofauna have been discovered in the Murchison and Gascoyne regions (Humphreys 1999a; Watts and Humphreys 1999; Humphreys 2001a; Leyss et al. 2003), and to the northeast, the Kimberley is proving to contain relictual lineages (Wilson & Ponder 1992), gondwanan relicts (Wilson & Keable 1999) and endemic taxa (Cho et al. 2005) (Figure 1).

Description of the Pilbara region

The Pilbara IBRA (Interim Biogeographic Region of Australia) region (20–24° S and 115–122° E) covers an area of approximately 178,000 km² in the arid north-west of Western Australia (Environment Australia 2000). The Pilbara IBRA region coincides, more or less, with the emergent part of the Pilbara Craton and encompasses five major hydrographic basins, from largest, Ashburton River Basin, De Grey River Basin, Fortescue River Basin, Port Hedland Coast Basin and Onslow Coast Basin
(Water and Rivers Commission 1996), although most of the Ashburton lies outside the IBRA region (Figures 1, 2). Because hydrography strongly influences the distribution of groundwater fauna, we are including the entire Ashburton River Basin as part of the greater ‘Pilbara region’ (234,886 km²), which is more or less synonymous with the ‘Pilbara IBRA region’. Additionally, Barrow Island located 50 km off the Pilbara coast is part the Pilbara IBRA region, based on phytogeographic criteria, although geologically (along with Cape Range) it is part of the Northern Carnarvon (geologic) Basin (Hocking et al. 1987), so for the purposes of this review we are considering Barrow Island as separate from the Pilbara region.

Climate and physiography

The climate of the Pilbara region is Subtropical Dry, characterised by very low rainfall, high daytime temperature in summer and low winter minima (Gentilli 1972). Mean annual rainfall across the region ranges between 200 and 350 mm (mostly in summer), with high inter-annual variation associated with irregular tropical cyclones. For example, Tropical Cyclone Monty deposited 200–400 mm rain over the Pilbara region in March 2004 (http://www.bom.gov.au/weather/wa/cyclone/monty) and consequent flooding removed major bridges on the Robe and Maitland Rivers. Annual pan evaporation varies from 3200 mm near the coast to > 4000 mm inland (Bureau of Meteorology 1977). Although palaeoclimatic data are sparse, it is clear that aridity was well established at Cape Range by the Pliocene 5.3–2 million years ago (Ma) (Wyrwoll 1993). The long-term cumulative trend towards increasing aridity reached peak intensity during the Last Glacial Maximum (Wyrwoll 1979; van der Kaars & De Deckker 2002).
Much of the Pilbara region is a very old landscape, with the Pilbara Craton having remained more or less continually emergent since the Proterozoic (> 545 Ma), bordered by marine environments (including the Tethys Sea) from the Devonian (410–354 Ma) until the fragmentation of Gondwana in the Cretaceous (141–65 Ma) (Cockbain & Hocking 1990). The major physiographic features of the Craton are the Hamersley Plateau, the Fortescue River, and the Chichester Plateau and Range (Figure 2). The Hamersley Plateau, which coincides with the Central Pilbara iron ore region and contains the Hamersley Range that reaches an elevation of 1250 m above sea level (asl), is drained by the Ashburton and Fortescue Rivers, which flow northwest to the Indian Ocean. The Chichester Plateau, of more subdued relief (618 m asl), is drained to the north by numerous rivers in the De Grey and Port Hedland hydrographic basins. The river drainage systems have deeply dissected the margins of the Hamersley and Chichester Plateaus, but then follow broad low-gradient valleys across extensive lowlands to wide coastal plains. Development of the river drainage systems commenced during the Late Cretaceous to Early Tertiary (Beard 1973, 1998; van de Graaff et al. 1977). The river valleys accumulated sediments during the Cainozoic (65–0 Ma), including alluvium, colluvium, calcrete and Robe Pisolite (channel iron deposits) (van de Graaff et al. 1977). The coastal plain, and present coast formed during the Quaternary, are composed of riverine plains, deltas, tidal flats, coastal dunes and limestone barriers, relic deltas and archipelago/ria shores (Beard 1975; Hickman 1983; Semeniuk 1996).

Groundwater habitats

Groundwater occurs throughout the Pilbara region in the Precambrian basement rocks, Phanerozoic sedimentary basins and Cainozoic deposits. It originates from direct rainfall recharge over outcropping basement rocks and from infiltration of rainfall and runoff through Cainozoic deposits, especially during periodic flooding (Davidson 1975; Water and Rivers Commission 1996). Aquifers have been classified into three types by Johnson & Wright (2001): (1) unconsolidated sedimentary aquifers; (2) chemically-deposited aquifers; and (3) fractured-rock aquifers. Unconsolidated sedimentary aquifers comprise Cainozoic valley and coastal plain alluvium and colluvium, whilst chemically-deposited aquifers consist of calcrete or pisolitic limonite formed within valley-fill sequences. Fractured rock aquifers occur in Proterozoic and Archaean sedimentary and volcanic rocks, including dolomite, sandstone, shale, chert, banded-iron formation and basalt.

The highest yielding aquifers are contained within the alluvial aquifers on the coastal plains and the valley-fill aquifers within the Fortescue Valley and Hamersley Range where sequences of alluvium/colluvium, Millstream Dolomite, calcrete and Robe Pisolite have saturated thicknesses generally between 10 to 30 m (Water and Rivers Commission 1996; Johnson & Wright 2001). Major aquifers also occur in Proterozoic dolomites (Wittenoom Dolomite and Carawine Dolomite) that have been karstified and contain cavernous zones (Barnett & Commander 1985). Aquifers in other hard rocks rely on fracturing and jointing which may be locally significant in the Brockman and Marra Mamba Iron Formations and the Hardye Sandstone (Johnson and Wright 2001). Inter-fluvial areas contain low yielding aquifers owing to shallow regolith cover, as do coastal flatlands which have high silt-clay fractions and low permeability away from the river deltas (Davidson 1975). Granitic rocks usually contain low-yielding aquifers unless deeply weathered.

Different geology and aquifer types yield particular groundwater habitats. The unconsolidated sedimentary aquifers provide only interstitial habitats within the primary porosity of the clastic sediments. The chemically-deposited aquifers are characterised by secondary porosity with karstic voids in the calcrete and vuggy porosity in the pisolite (Johnson and Wright 2001). Secondary porosity is also developed in the basement rock aquifers in fractured and weathered zones or along bedding plane partings or joints. Across most of the Pilbara region, groundwater salinities are fresh (< 3000 mg L⁻¹ Total Dissolved Solids) but they may be locally saline where evapo-concentration occurs within internal drainage basins such as the Fortescue Marsh (Commander 1989) or even hypersaline on the coastline (Semeniuk 1996). Anchialine habitats are present in coastal areas such as the lower Fortescue River where there is a saltwater interface (Commander 1993). Other groundwater habitats include many springs and spring-brooks, and extensive hyporheic habitats developed in the alluvium of surface watercourses.

Stygofauna

Sampling methods and coverage

As has been the case elsewhere in the world, sampling for stygofauna in the Pilbara has been constrained by the availability of suitable access points to groundwater. Most sampling to date has been undertaken in bores, of which there are > 3,700 (Allen 1997) associated with water supply and mine dewatering operations, and to a lesser extent in geotechnical drill holes, pastoral wells, springs, and the hyporheos. Of 223 sampled sites, 214 (96 %) were bores or wells while spring-brooks and springs (5 sites) and the hyporheos (4 sites), have been comparatively under-sampled. Sampling methods have consisted mostly of hauling a plankton net (250 or 350 µm mesh) through the water column in bores and wells, while springs and shallow hyporheic habitats have been sampled by modified ‘kick sampling’ (Halse et al. 2002), Bou Rouch pumping (Bou & Rouch 1967), or the Karaman-Chapuis method (Camacho 1992a). Sampling has mostly been of low intensity with one sampling method applied and a single sample from each site, although the borefields developed for water supply or mine dewatering have been sampled more than once.

Published records

Of 332 published records, more than one-half (56 %) lie in the Fortescue Basin (186 records), nearly one-third (31 %) in the Ashburton (52) and Onslow Coast (51) Basins, and the remaining 13 % in the De Grey (24) and Port Hedland Basins (19) (Figure 3). There are few published records from the upper catchments of the Ashburton, De Grey, and Port Hedland Basins. The clustered distribution of records reflects the concentration of sampling in aquifers with borefields or wells.
developed for water supply or mine dewatering, such as Ethel Gorge (68 records), Millstream (42), lower Robe (38), lower Fortescue (23), Mulga Downs (23), Weeli Wolli (14), Seven Mile Creek (13), and Turee Creek (6). Mulga Downs is the only location where concentrated sampling has occurred in pastoral wells, rather than a water supply or mine dewatering borefield.

Systematics

Published literature records 78 species from the Pilbara belonging to 41 genera and 21 families (Table 1). This compares with 24 species (22 genera) and 25 species (15 genera) found at Cape Range and Barrow Island, respectively. Recorded diversities from Cape Range (63 records, > 30 sites) and Barrow Island (42 records, > 20 sites) are likely to approach actual diversities because considerable sampling and taxonomic effort has been applied to these areas over a number of years. For the size of the area, proportionately less effort has been applied to the Pilbara and the diversity in Table 1 may be a substantial under-estimate. For example, recent collecting suggests much greater diversity of ostracods and bathynellids than previously recognized (I Karanovic, pers. comm.; J-L Cho, pers. comm.).

Knowledge of the Pilbara stygofauna is at an early stage and as further taxonomic work is undertaken the number of species in the Pilbara will likely increase and the proportions of various faunal groups may change. Nonetheless, the synopsis of obligate groundwater species across the world by Botosaneanu (1986), which recorded approximately 3,574 species belonging to 17 major taxonomic groups, makes a useful point of reference. To date, formally described representatives from only nine of the 17 major faunal groups have been recorded from groundwaters of the Pilbara region (Figure 4), although representatives (mostly undescribed) of six other major groups (Mollusca, Oligochaeta, Polychaeta, Rotifera, Nematoda, Turbellaria) are known to be present (M. Scanlon, J. Cocking, H. Barron, A. Pinder, J. McRae, unpublished data). Nearly three-quarters (73.8 %) of published records are Copepoda, followed by Ostracoda (12.7 %) and then Amphipoda (5.1 %), with all other groups included in the remaining 8.4 %. Groups that have not so far been recorded from the Pilbara are Remipedia and Coleoptera, both of which are present in adjacent regions, respectively at Cape Range (Yager & Humphreys 1996), and in the Gascoyne (Watts and Humphreys 2004) and Little Sandy Desert regions (M. Scanlon, J. Cocking, H. Barron, unpublished data).

Several faunal groups that are poorly represented in the rest of the world appear to be relatively species-rich in the Pilbara: for example, the region supports two of the four known species of Spelaeogriphacea (Poore and Humphreys 2003). The Pilbara fauna also appears to be disproportionately rich in Ostracoda (27 % of Pilbara fauna cf. 3 % World) and Copepoda, (39 % cf. 17 %). The large number of species belonging to these two groups (Ostracoda: 18 species in eight genera; Copepoda: 31 species in 18 genera) partly reflects the focus of taxonomic effort but, nonetheless, the groups are clearly

Figure 3. Distribution of published stygofauna records of the Pilbara region and adjacent localities including Cape Range and Barrow Island. Sampled aquifers named in the text are shown, and the five major hydrographic basins (numbered as in Figure 2). Boxed area refers to Figure 5.
Table 1

Systematic list of genera with the number of described stygal species in the Pilbara region, Cape Range and Barrow Island, and a cross reference number to the literature source. *But see Finston et al. (2004) for molecular evidence that many of the species of Chydaekata are synonyms.

<table>
<thead>
<tr>
<th>Higher Rank</th>
<th>Family</th>
<th>Genus</th>
<th>Pilbara No.</th>
<th>Cape Range No.</th>
<th>Barrow Island No.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoconida</td>
<td>Momonidae</td>
<td>Hesperomonomia</td>
<td>1</td>
<td>11</td>
<td>5, 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mideopsidae</td>
<td>Tiramideopsis</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td>Syllidae</td>
<td>Pterosyllis</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typosyllis (Ehlersia)</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>Bogidiellidae</td>
<td>Bogidomma</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hadziidae</td>
<td>Hadzia</td>
<td>1</td>
<td>3, 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melitidae</td>
<td>Nedsia</td>
<td>1</td>
<td>1, 2, 5, 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niocalapis</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramelitida</td>
<td></td>
<td>Chydaekata</td>
<td>15</td>
<td>5, 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molina</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pilbarus</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathynellacea</td>
<td>Parabathynellida</td>
<td>Atopobathynella</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copepoda</td>
<td>‘Genus A’</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Genus B’</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Genus C’</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inermipes</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitoka</td>
<td>1</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stygionotocrella</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parapseudoleptomesochra</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elaphocephalid</td>
<td>1</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allocyclops</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apocylops</td>
<td>1</td>
<td>29, 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diacyclops</td>
<td>6</td>
<td>28, 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halicyclops</td>
<td>2</td>
<td>26, 30, 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fiersicyclops</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mesocylops</td>
<td>2</td>
<td>16, 29, 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metacyclops</td>
<td>2</td>
<td>22, 26, 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microcylops</td>
<td>1</td>
<td>26, 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Genus D’</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermocylops</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tropicylops</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schizopera</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudectinosoma</td>
<td>1</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bunderia</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parastenocaris</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudocylopidae</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styriglaya</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speleophriidae</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phyllopondosypus</td>
<td></td>
<td>1, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schizopera</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td>Parastenocarida</td>
<td>Parastenocaris</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hilibratae</td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haptolana</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pygolabis</td>
<td>1</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td>Parastenocarida</td>
<td>Parastenocaris</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hilibratae</td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haptolana</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pygolabis</td>
<td>1</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Areacandona</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deeminutioacandona</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humphreyssacandona</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meridiansacandona</td>
<td>2</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neocandona</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notacandona</td>
<td>2</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oriscandona</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pilbaracandona</td>
<td>2</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darwinulida</td>
<td></td>
<td>Vestakulina</td>
<td>2</td>
<td>11, 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limnoctheridacea</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Danielopsida</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mangkurti</td>
<td>2</td>
<td>32, 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lasiocineta</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haloshaebonida</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haloshaeba</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limyverina</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophisteron</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

speciose in groundwaters of the Pilbara region. Copepoda are also speciose in the Murchison (31 species in 16 genera) (Karanovic 2004b) and Cape Range (11 species, 10 genera) (Table 1) whereas Ostracoda are less diverse in adjacent regions (Murchison: five species, one genus; Cape Range: one species).

A striking feature of the groundwater fauna in north-west Western Australia is the high proportion of species with marine Tethyan, Pangean and/or Gondwanan affinities (Humphreys 1993a, 2000b, Knott 1993). Most of the marine faunal elements recorded in the Pilbara region (atyid decapods, cirolanid isopods, thermosbaenaceans, melitid amphipods, and the cyclopoid copepods Halicyclops and Apocylops) are shared at generic or supra-generic level with nearby Cape Range and Barrow Island. As noted by Humphreys (2001a), the marine elements appear to share a generalised distribution coinciding with the present coastal margins of the Northern Carnarvon Basin and the Pilbara Craton, with the greatest inland penetration (110 km, 300 m asl) by Thermosbaenacea in the Robe River valley (Figure 5).

Figure 5. Distribution of some marine and/or Tethyan elements shared between the Pilbara region, Cape Range and Barrow Island: Halicyclops (Cyclopidae), Stygiocaris (Atyidae), Halsobaena (Thermosbaenacea). Refer Figure 3 for area shown.

Figure 4. Systematic composition of described stygofauna from the Pilbara region (A) compared with World Average (B) derived primarily from Botosaneanu (1986) as in Scarsbrook et al. (1998) and supplemented with data in Boutin (1998).

The Pilbara region differs from Cape Range and Barrow Island in the occurrence of several ancient freshwater lineages including paramelitid amphipods, tainiospid and phreaticoid isopods, momonid and mideopsid acarines, various copepod taxa, and ostracods: (Candonididae, Darwinulidae, Limnocytheridae), all of which appear to be absent from the younger Tertiary karst areas. To date, the only stygal freshwater lineage known from the Tertiary karsts is an undescribed species of phreodrilid oligochaete from Barrow Island (A. Pinder, pers. comm.); other phreodrilids (mostly undescribed) are recorded from groundwaters in the Pilbara and Murchison regions (Pinder 2001). Sixteen freshwater genera (59 % of total Pilbara genera) have to date been recorded only in the Pilbara region, including Mangkurtu (Spelaeogriphacea), Pilbarophreatoicus (Phreatoicidea), Molina, Pilbarus and Chydaekata (Paramelitidae), ‘Genus A’, ‘Genus B’, ‘Genus C’ (Cyclopidae), and the eight genera of candonine ostracods (Table 1). While taxonomic knowledge of the Murchison and other adjacent regions is still incomplete, some distinct differences from the Pilbara region have already been noted (Humphreys 2001a). For example, both Halonisicus isopods (Taiti and Humphreys 2001) and dytiscid beetles (Watts and Humphreys 2004) seem to be absent from the Pilbara.

The richness of species recorded from individual aquifers in the Pilbara region appears roughly proportional to sampling effort: Ethel Gorge (31 species: 43 sites), Millstream (16: 24), Mulga Downs (11: 10), lower Fortescue (10: 10), lower Robe (9: 8), Weeli Wolli (7: 6), Seven Mile Creek (5: 7), Turee Creek (4: 5). The three aquifers with more than 10 species contain karstic calcrite and dolomite and the two richest aquifers contain comparatively high diversity, respectively, of paramelitid amphipods and candonine ostracods (15 species and 5 species, Ethel Gorge), and cyclopoid copepods of the genus Diacyclops (5 species, Millstream).
Discussion

Sampling coverage of the Pilbara region is skewed, in terms of both areal coverage (Figure 3) and the different types of groundwater habitats represented. This is partly a consequence of logistical constraints that have directed much of the sampling towards water supply borefields and mine dewatering sites, where access is afforded to many bores within a small area, although widely dispersed pastoral wells have also been sampled. However, even if the available bores had been randomly sampled, sampling would have been biased because bores and wells are concentrated in high-yield aquifers (mostly Cainozoic valley fill sediments with calcite and limonite, or Proterozoic carbonates). There are comparatively few bores or wells in low-yielding aquifers but meiofauna have been recorded from fractured igneous and sedimentary (ore-bearing) rocks (Eberhard 1998; Eberhard & Humphreys 1999). Sampling of springs, or the benthic and interstitial zones of spring-brooks and rivers has been too limited to draw general conclusions about the degree of faunal overlap and importance of groundwater-surface water ecotones but these habitats have also yielded stygofauna (e.g., Poore & Humphreys 1998; Halse et al. 2002). Caves provided important access points for sampling stygofauna at Barrow Island and Cape Range, but in the Pilbara region only a handful of enterable caves are known at three locations (Millstream, Rippon Hills and Tongolola Creek) (Western Australian Speleological Group, pers. comm.). Nonetheless, the Pilbara region contains extensive karstic carbonates and we predict that karst springs will have rich stygobite faunas.

In evaluating the biodiversity of a region, comparisons are often made with endemism and species richness of other areas (e.g., Storey et al. 1993; Horwitz 1997; Halse et al. 2000; Halse 2004; Pinder 2004). However, endemism is scale-dependent (e.g., local endemism versus regional endemism) and assessment assumes a complete knowledge of species taxonomy and distribution. For most Pilbara taxa this knowledge is very incomplete. While many species appear to have localised distributions, recent sampling has shown some taxa are more widely distributed than published records suggest (J. Reeves, M. Scanlon, J. Cocking and H. Barron, unpublished data) and a molecular genetic study of amphipods by Finston and Johnson (2004) in the Fortescue and Ashburton River basins found evidence of genetic exchange within sub-catchments. Hence, we remain cautious in interpretation of local endemism patterns at this time. However in terms of regional endemism, the Pilbara region contains several major freshwater lineages (phreatoicid isopods, momonid and mideopsid acarines) that have not been recorded at Cape Range, Barrow Island or in the Murchison. Independently of endemism, the Pilbara region has comprehensive systematic diversity, with nearly all major stygofauna groups represented by published or unpublished records, including several higher-level systematic lineages that are phylogenetic relics (see Humphreys 2001a).

Valid comparison of species richness between regions is hindered because of differences in area, habitats, seasonality, taxonomic resolution, sampling methods and effort (e.g., Horwitz 1997). Most assessments of subterranean biodiversity focus on the comparative richness of stygobites because these species are permanently confined to subterranean habitats (see for example Knott 1993; Culver & Sket 2000; Humphreys 2000b). In groundwater environments that are more or less isolated from surface waters, such as occur at Cape Range, Barrow Island and in most of the Pilbara region, the stygofauna consists almost entirely of stygobites. In a review of world hotspots of subterranean biodiversity, which specifically excluded porous aquifers and interstitial species, Culver and Sket (2000) listed 20 individual caves, springs and karst wells that contained 20 or more stygobites and/or troglobites (obligate terrestrial subterranean species). The one Australian hotspot (Bayliss Cave in Queensland) included in the list supported exclusively troglobites, while Cabaret Cave at Yanchep near Perth (Figure 1), which contained > 40 aquatic species (Jasinska et al. 1996; Jasinska & Knott 2000), was not included because the majority of species are not strictly stygobitic (Culver and Sket 2000).

Outside of the Pilbara region, the highest published diversity of stygobites from an individual karst aquifer in Australia is 25 species from Barrow Island (Table 1, and Humphreys 2000b). Ignoring Ethel Gorge, where there is molecular evidence that many of the species of Chydaekata are not valid (Finston et al. 2004), the richest aquifer in the Pilbara region is Millstream with 16 species. The next richest location (12 species) is a calcrite aquifer (Lake Violet) in the Murchison (Watts and Humphreys 2003). Comparisons with eastern Australia are difficult, because of poor taxonomic resolution within most groups and limited sampling coverage of meiofauna, but the richest single karst area assemblies in the east appear to support ≤ 10 stygobites (Eberhard et al. 1991; Eberhard 1992, 1993; Eberhard & Spate 1995).

While most studies have focussed on stygobites in karst aquifers because of the speleological basis of much subterranean work (e.g., Camacho 1992b), stygobites occur more widely in alluvial aquifers (see for example Dole-Olivier et al. 1994; Stanford et al. 1994; Ward & Voelz 1994; Danielopol et al. 2000b; Marmonier et al. 2000). Alluvial aquifers in the Rhone River Basin, France, hold greater stygobite richness than adjacent karst aquifers within the same drainage basin (Dole-Olivier et al. 1994). This situation appears to be mirrored in the Pilbara region where recent sampling using pump methods indicates that some alluvial aquifers in the lower Robe and lower Fortescue Rivers have very high richness, including > 20 stygobites collected from a single bore (M. Scanlon and J. Cocking, unpublished data). This richness exceeds that recorded from any single bore, well or cave in Australia, the previous richest site was Bundera Sinkhole, at Cape Range with 12 species (Humphreys 1999a).

With the exception of large taxa such as fish, which are rare in Australian subterranean waters and worldwide tend to be restricted to karst (Prongdole 1997; Humphreys 1999b), stygofaunal elements from the Pilbara region and adjacent areas tend to colonise most groundwater environments, whether karst conduit or the benthic and interstitial zones of springs and spring-brooks. This applies to both meiofauna (copepods) and meso/macrofauna (amphipods, isopods, decapods). Taxa originally identified from karstic habitats at Cape Range...
and Barrow Island (Stygicaris, Nedzia, Halosbaena, Haptolana, Halicyclops, Apocylops) were subsequently collected in alluvial river-aquifer systems on the Pilbara coastal plain (Humphreys 2001a). Humphreys (1993a) suggested that the Cape Range and Barrow Island karsts were colonised by fauna which migrated either from the Pilbara Craton or the fringing Mesozoic deposits. Hence future sampling of Pilbara coastal margins and islands (e.g., Dampier Archipelago, Montebello Islands), particularly in anchialine habitats, may reveal the presence of other marine Tethyan and/or anchialine elements. Irrespective of future discoveries, this review confirms that within the already world-recognised subterranean fauna richness of north-west Western Australia, the Pilbara region is important for the conservation of subterranean biodiversity.

Acknowledgements: We thank M. Scanlon, J. Cocking, H. Barron, A. Finder, J. McRae (Department of Conservation and Land Management), and J. Reeves (Australian National University) for providing valuable unpublished data. We also thank the three anonymous referees, whose comments improved the manuscript.

References

Beard J S 1975 The vegetation of the Pilbara area 1: 1 000 000 Vegetation Series Explanatory notes to Map Sheet 5 of Vegetation Survey of Western Australia. University of Western Australia Press, Perth.

Bruce A J and Humphreys W F 1993 Haptolana pholeta sp. nov., the first subterranean flabelliferan isopod crustacean (Cirolanidae) from Australia. Invertebrate Taxonomy 7: 875–884.

Camacho A I 1992a Sampling the subterranean biota cave (aquatic environment). In: The natural history of biospeleology (ed A I Camacho), Graficas Mar-Car, Spain, 135–168.

Commander P D 1989 Hydrogeological map of Western Australia, 1: 2 500 000. Geological Survey of Western Australia, Perth.

Davidson W A 1975 Hydrogeological reconnaissance of the northwest Pilbara region. Western Australia Geological Survey Record.

Eberhard S 1998 Groundwater fauna in the West Angles project area. Western Australian Museum report to Ecologia Environnemental Consultants, Perth.

Eberhard S M and Humphreys W F 1999 Stygofauna survey – Ore Body 23 (Newman) and Mine Area C. Western
Australian Museum report prepared for BHP Iron Ore Pty Ltd, Perth.

Environment Australia 2000 Revision of the Interim Biogeographic Regionalisation for Australia (IBRA) and development of version 3.1 – Summary report. Environment Australia, Canberra.

Karanovic T 2006 in press Subterranean copepods (Crustacea: Copepoda) from the Pilbara Region in Western Australia. Records of the Western Australian Museum Supplement 70.

Karanovic T and Pesce G L 2002 Copepods from groundwaters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida). Hydrobiologia 470: 5–12.

Karanovic T, Pesce G L and Humphreys W F 2001 Copepods from groundwaters of Western Australia. V. Phyllopodopsyllus wellsi sp. nov. (Crustacea: Copepoda: Harpacticoida) with a key to world species. Records of the Western Australian Museum 20: 333–344.

Mees G F 1962 The subterranean fauna of Yardie Creek station, North West Cape, Western Australia. *Journal of the Royal Society of Western Australia* 45: 24–32.

Playford P E 2001 Subterranean Biotas in Western Australia. Report for the Environmental Protection Authority, Perth.

Watts C H S and Humphreys W F 2004 Thirteen new Dytiscidae (Coleoptera) of the genus *Limbodessus* Guignot and *Nirripirri* Watts and Humphreys, from underground waters in Australia. *Transactions of the Royal Society of South Australia* in press.

